Step of Proof: symmetrized_preorder
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
symmetrized
preorder
:
1.
T
: Type
2.
R
:
T
T
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
Refl(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
latex
by
InteriorProof
((((TryOnAllClauses (Unfold `refl`))
CollapseTHEN (HypBackchain))
)
CollapseTHEN (HypBa
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
CollapseTHEN (HypB
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
:
A
.
B
(
x
)
,
P
&
Q
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
t
T
origin